Electrical Exam Preparation

National Electrical Code and Electrical Exam Preparation and Study Guides

Learning the National Electrical Code® can be a daunting task, even for those who are experienced in the electrical trade.

Our Founder and CEO has over 30 years of experience teaching methods dedicated to studying and understanding the National Electrical Code® and is the inventor of the Fast Trax® NEC® Learning Program.

In fact, we have proven electrical code related programs for master electricians and journeyman electricians to help learn the National Electrical Code , also known as the NEC®.

For electrical exam preparation, such as electrical exam prep, our Fast Trax® Black Course is for local and state electrician exams for journeyman electricians and master electricians alike.

However, we also have electrical education and training programs designed specifically for both journeyman and master electricians, as well as electrical inspectors, who desire to learn the national electrical codes associated with electrical residential wiring, electrical commercial wiring, and let's not forget industrial electrical wiring. These programs (listed below) cover the basic electrical fundamentals of the electrical trade for electricians and electrical inspectors.

See below and click the link to the electrical course of your choice.

National Electrical Code and Electrical Exam Preparation

The National Electrical Code (NEC), or NFPA 70, is a regionally adoptable standard for the safe installation of electrical wiring and equipment in the United States. It is part of the National Fire Code series published by the National Fire Protection Association (NFPA), a private trade association.[1] Despite the use of the term “national”, it is not a federal law. It is typically adopted by states and municipalities in an effort to standardize their enforcement of safe electrical practices.[2] In some cases, the NEC is amended, altered and may even be rejected in lieu of regional regulations as voted on by local governing bodies.

The “authority having jurisdiction” inspects for compliance with these standards.[3][4]

The Development of the National Electrical Code

Let us not confuse the NEC with the National Electrical Safety Code (NESC) published by the Institute of Electrical and Electronics Engineers (IEEE). The NESC is used for electric power and communication utility systems including overhead lines, underground lines and power substations.

Under the guidance of NFPA’s Committee on the National Electrical Code developed the NEC, which consists of twenty code-making panels and a technical correlating committee. Work on the NEC is sponsored by the National Fire Protection Association. The NEC is approved as an American national standard by the American National Standards Institute (ANSI). It is formally identified as ANSI/NFPA 70.

The First Publication of the National Electrical Code

First published in 1897, the NEC is updated and published every three years, with the 2020 edition being the most current. Most states adopt the most recent edition within a few of years of its publication. As with any “uniform” code, jurisdictions may regularly omit or modify some sections, or add their own requirements (sometimes based upon earlier versions of the NEC, or locally accepted practices). However, no court has faulted anyone for using the latest version of the NEC, even when the local code was not updated.[5]

In the United States, anyone, including the city issuing building permits, may face a civil liability lawsuit for negligently creating a situation that results in loss of life or property. Those who fail to adhere to well known best practices for safety have been held negligent. This liability and the desire to protect residents has motivated cities to adopt and enforce building codes that specify standards and practices for electrical systems (as well as other departments such as water and fuel-gas systems). This creates a system whereby a city can best avoid lawsuits by adopting a single, standard set of building code laws. This has led to the NEC becoming the de facto standard set of electrical requirements.[6] A licensed electrician will have spent years of apprenticeship studying and practicing the NEC requirements prior to obtaining their license.

The Deactivation and Decommissioning (D&D) customized extension of the electrical code standard defined by National Electrical Code was developed since current engineering standards and code requirements do not adequately address the unique situations arising during D&D activities at U.S. Department of Energy (DOE) facilities. The additional guidance is needed to clarify the current electrical code for these situations. The guidance document provides guidance on how to interpret selected articles of NFPA 70, “National Electrical Code” (NEC), in particular certain articles within Article 590, “Temporary Power,” for D&D electrical activities at DOE sites.[7]

The NEC also contains information about the official definition of HAZLOC and the related standards given by the Occupational Safety and Health Administration and dealing with hazardous locations such as explosive atmospheres.

How the National Electrical Code is designed

The Structure of the National Electrical Code

Let us understand the structure of the NEC, it is composed of an introduction, nine chapters, annexes A through J, and the index. The introduction sets forth the purpose, scope, enforcement, and rules or information that are general in nature. The first four chapters cover definitions and rules for installations (voltages, connections, markings, etc.), circuits and circuit protection, methods and materials for wiring (wiring devices, conductors, cables, etc.), and general-purpose equipment (cords, receptacles, switches, heaters, etc.). The next three chapters deal with special occupancies (high risk to multiple persons), special equipment (signs, machinery, etc.) and special conditions (emergency systems, alarms, etc.). Chapter 8 is specific to additional requirements for communications systems (telephone, radio/TV, etc.) and chapter 9 is composed of tables regarding conductor, cable and conduit properties, among other things. Annexes A-J relate to referenced standards, calculations, examples, additional tables for proper implementation of various code articles (for example, how many wires fit in a conduit) and a model adoption ordinance.

How the National Electrical Code is Formatted

Beginning with the introduction and the first 8 chapters contain numbered parts, articles, sections (or lists or tables), item, specifics, inclusions/exclusions, precise inclusion/exclusion, italicized exceptions, and explanatory material – explanations that are not part of the rules. Articles are coded with numerals and letters, as ###.###(A)(#)(a). For example, 805.133(A)(1)(a)(1), would be read as “article 805, section 133, item (A) Separation from Other Conductors, specific (1) In Raceways, cable Trays, Boxes,… inclusion (a) Other Circuits, precise inclusion (1) Class 2 and Class 3….” and would be found in Chapter 8, Part IV Installation Methods Within Buildings. For internal references, some lengthy articles are further broken into “parts” with Roman-numerals (parts I, II, III, etc.).

Each code article is numbered based on the chapter it is in. Those wiring methods acceptable by the NEC are found in chapter 3, thus all approved wiring method code articles are in the 300s. Efforts have been underway for some time to make the code easier to use. Some of those efforts include using the same extension for both code articles and for the support of wiring methods.

The NFPA also publishes a 1,497-page NEC Handbook (for each new NEC edition) that contains the entire code, plus additional illustrations and explanations, and helpful cross-references within the code and to earlier versions of the code. The explanations are only for reference and are not enforceable.

Understanding the National Electrical Codes and NRTL's

Underwriters Laboratories, one of many of the testing laboratories recognized by OSHA.

Many NEC requirements refer to “listed” or “labeled” devices and appliances, and this means that the item has been designed, manufactured, tested or inspected, and marked in accordance with requirements of the listing agency. To be listed, the device must meet testing and other requirements set by a listing agency such as Underwriters Laboratories (UL), SGS North AmericaIntertek (Formerly ETL), Canadian Standards Association (CSA), or FM Approvals (FM). These are examples of “national recognized testing laboratories” (NRTL) approved by the U.S. Department of Labor’s Occupational Safety and Health Administration (OSHA) under the requirements of 29 CFR 1910.7.[9] Only a listed device can carry the listing brand (or “mark”) of the listing agency. Upon payment of an investigation fee to determine suitability, an investigation is started. To be labeled as fit for a particular purpose (for example “wet locations”, “domestic range”) a device must be tested for that specific use by the listing agency and then the appropriate label applied to the device. A fee is paid to the listing agency for each item so labeled, that is, for each label. Most NRTLs will also require that the manufacturer’s facilities and processes be inspected as evidence that a product will be manufactured reliably and with the same qualities as the sample or samples submitted for evaluation. An NRTL may also conduct periodic sample testing of off-the-shelf products to confirm that safety design criteria are being upheld during production. Because of the reputation of these listing agencies, the “authority having jurisdiction” ( or “AHJ” – as they are commonly known) usually will quickly accept any device, appliance, or piece of equipment having such a label, provided that an end user or installer uses the product in accordance with manufacturer’s instructions and the limitations of the listing standard. However, an AHJ, under the National Electrical Code provisions, has the authority to deny approval for even listed and labeled products. Likewise, an AHJ may make a written approval of an installation or product that does not meet either NEC or listing requirements, although this is normally done only after an appropriate review of the specific conditions of a particular case or location.